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Abstract

Seven models for computing underwater radiances and irradiances by numerical solution
of the radiative transfer equation arc compared. Themodels arc applied to the solution of several
problems drawn from optical oceanography. The problems include highly absorbing and highly
scattering waters, scattering by molecules and by particulates, stratified water, atmospheric
effects, surface wave effects, bottom effects, and Raman scattering.  The models provide
consistent output with errors (owing to Monte Carlo statistical fluctuations) in computed
irradiances being seldom larger, and usually smaller, than the experimental errors made in
measuring irradiances when using current oceanographic instrumentation. Computed radiances

display somewhat larger errors,

|. Introduction
. Various numerical models arc now in usc for computing underwater irradiances and
radiance distributions. These models were designed to address a wide range of oceanographic
problems. The models arc based on various simplifying assumptions, have differing levels of
sophistication in their representation of physical processes, and employ several different
numerical solution techniques.

In spite of the increasingly important roles these numerical models arc playing in optical
oceanography, the modcls remain incompletely validated in the sense that their outputs have not
been extensively compared with measured values of the quantities they predict. This desirable
mode]-data comparison is not presently possible because the requisite comprehensive oceanic
optical data sets arc not available. Such data sets must contain simultaneous measurcments of
the inherent optical properties of the scawater (e.g. the absorption and scatteri ng cocfficicnts,
and the scattering phase function), environmental parameters (e.g. the sky radiance distribution
and sca state) and radiometric quantities (e.g. the complete radiance distribution, or various

irradiances). The inherent optical properties and the environmental parameters arc necded as




input to the numerical models; the radiometric variables arc the quantities predicted by the
models.  Current developments in oceanic optical instrumentation and mecasurement
methodologies give cause for hope that data sets adequate for comprchensive model-data
comparisons will become available within the next fcw years.

Meanwhile, our faith in these models’ predictions rests upon careful debugging of
computer code, on interna checks such as conservation of energy or known relations between
inherent and apparent optical properties, on simulation of afcw grossy simplified situations for
which analytical solutions of the radiative transfer equation arc available, and on comparison
(sometimes indirect) with incomplete data sets. An additional worthwhile check on the various
models canbe made by applying them to a common set of realistic problems. Such model-model
comparisons help to identify errorsin coding or weakensses in the mathematical representation
of physica phenomena, to quantify numerical errors particular to the various solution agorithms,

,todetermine optimum numerical techniques for simulation of particular physical phenomena, and
to determine which models might be appropriate for inclusion in a future library of underwater
radiative transfer codes corresponding to those now available for atmospheric radiative transfer
modeling (such as LOWTRANY).

In March 1991, the Oceanic Optics Program of the Office of Naval Research sponsored
aworkshop in order to foster a close examination of the various models now in use, and in order
to begin the process of model-model comparison.  This paper reports the results of that
comparison.  The models being evaluated arc described in Sec. 11. During the workshop the
participants defined a set of canonical (standard) problems for usc in model comparisons. These
problems arc documented in Sec. 111. Section IV presents selected results obtained when the
models of Sec. 11 are applied to the problems of Sec. 111.




11. Numerical Models
All of the numerical models compared here gencrate an approximate solution to the time-
independent, monochromatic radiative transfer equation in onc spatial dimension:
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Here L(t;p,¢) is the unpolarized spectral radiance (at wavelengthA, omitted for brevity) at optical

depth T and in direction 1,0), o, is the scattering-to-attenuation ratio,  is the scattering phase

function, and S represents any internal source of radiance, The depth tis measured positive

downward from the mean sea surface, and the polar angle 6 = cos™p is measured from the nadir

direction. (See Tab. | for alist of symbols, their units and definitions.) In order to solve Egq.

(1) within awater body, it is necessary to specify (1) the inherent optical properties of the water

body, m, and B, (2) the distribution of internal sources S, (3) the radiance distribution externally
sincident on the boundaries of the water body, and (4) the physical nature of the boundaries

themselves.

The models differ primarily in the mathematical techniques used to solve Eq. (1) and in
the treatment of boundary conditions at the sca surface. Two of the models described below
(models 11 and DO) employ analytical (invariant imbedding and discrctc ordinates) techniques
for solving Eq. (1), and five of the models (MC 1-MC5) employ probabilistic (Monte Carlo)
techniques. Each of the models, as applied to the solution of the canonica problems defined in
Sec. 111, solves EQ. (1) for a plane-parallel water body that is laterally homogeneous but may be
inhomogencous with depth. The upper boundary of the water body is the wind-blown, random
air-sea interface. The lower boundary is either an infinitely thick layer of water below the
greatest depth of interest, or an opague reflectiﬁg bottom at a finite depth. The models all
assume that externally applied radiance is incident downward on the upper side of the air-water
surface. The models are all monochromatic and there arc no internal sources of radiance (such

as bioluminescence). However, some of the models can simulate inelastic scattering processes
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by sequential solutions of Eq. (1). For example, the model is first run at the wavelength of
excitation, A,,, to compute the energy shifted by inelastic scattering from A, to another
wavelength A, and then the model is run again at A, with the radiance shifted from A, appearing
asasourceterm Sat A. A particular example of S used in this treatment of Raman scattering
is given in the Appendix. The modelsall account for multiple scattering and can usc realistic
scattering phase functions that arc highly peaked in forward directions, asisthe case for sca
water.

Several of the models have additonal capabilities, such as the computation of polarized
radiance in the Stokes vector format and the simulation of azimuthally anisotropic random air-
water surfaces. These capabilities arc not evaluated in this paper.

Allbut one of the models directionally discretizes Eq. (1) by partitioning the set of all
directions, &, into a grid of quadrilateral regions bounded by lines of constant p and constant ¢,

J plus two polar caps (collectively called “quads’). The fundamental quantity computed by these
models is the quad-averaged radiance defined by
Leuw = = [ [ Lewug)dody, @

w (e Q,,
L(t;u,v) is physicaly interpreted as the average radiance over the set of directions (u,6) contained

in the ww™ quad, Q,, (u labels u bands and v labels ¢ bands), which subtends a solid angle of size
Q... In the model comparison wc chose to usc 24 Q-bands of uniform width A¢ = 15°, and 20
p-bands of sizc Ap = 0.1. However, a polar cap with Ay = 0,1 has a half-angle of 6 = 25.8°,
which is much larger than onc would normally usc in computing nadir or zenith radiances.
Therefore, Some models were run with a dlightly different y spacing and smaller polar caps. The
remaining model (DO) computes the radiance L(t;u,¢) in particular (u,¢) directions.

Wc now briefly describe the distinguishing features of the various models.

Model 11 (Invariant Imbedding, author C. D. M.) Theintegral operator of Eq. (2), which

averages any quantity over the set of directions(u,9) € Q,,, can be applied to Eq. (1). The result
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Is a quad-averaged radiative transfer equation in which L(t;p,9) is replaced by L(t;u,v),
integration over all directions isreplaced by summation over all quads, and the phase function
B (t;u’,0"—p,0) isreplaced by a quad-averaged quantity B (t;r,s—u,v) that specifics how much
of the radiance initially headed into quad Q,, gets scattered into quad Q,,. Using standard
techniques of Fourier analysis and invariant imbedding theory, the equations for the L(t;u,v) arc
transformed into a set of Riccati differential equations governing the depth dependence of certain
reflectance and transmittance functions within the water body. Depth integration of the Riccati
equations (by a high-order Runge-Kutta agorithm) and incorporation of the boundary conditions
at the sca surface and bottom Icads eventualy to the desired L(t;u,v) at al depths. These
mathematical operations arc outlined in Mobley® and arc described in full in Mobley and
Preisendorfer’. The inherent optical properties of the water body can vary arbitrarily with depth,
Absorption and scattering arc built up as sums of termsrepresenting the contributions by pure
water, particles of various types, and dissolved substances.

This model uscs a Monte-Carlo simulation of the wind-blown sea surface to evaluate
certain quad-averaged, bi-directiona reflectance and transmittance functions that describe how
the sca surface reflects and transmits radiance incident on the surface from above and below.
In this simulation, the sca surface is resolved into a grid of triangular wave facets whose vertex
elevations arc randomly determined from any chosen wave slope-wind speed spectrum in a
manner described in Moblcy and Preisendorfer® and in Preisendorfer and Mobley®. The surface
simulation allows for multiple reflections of rays by wave facets and for the possibility of
shadowing of onc facet by another. The probabilistic ray-tracing calculations for setting up the
surface boundary conditions are independent of the analytical computations within the water
body. Moreover, since the ray iracing involves only the surface wave facets, for which it is
assumed that there is no absorption, no rays arc “lost” to absorption. It is therefore
computationally feasible to trace a sufficient number of rays to reduce the Monte Carlo

fluctuations in the computed bi-directional surface functions to a negligible level.




This model docs not include an atmosphere per se. The sky radiance incident on the sca
surface is obtained either from an analytic model (e.g. a cardioidal distribution, or the empirical
model of Harrison and Coombes®), or from the output of a separately run atmospheric radiative.
transfer model . In the ssimulation of problem 4, below, LOWTRAN-7 was run to generate the sky
radiance at the center of each of the u-¢ quads; that value was then taken as the average sky
radiance over the quad.

The bottom boundary can be either an infinitely thick homogeneous layer of water below
some depth t,,,,, Or an opaque bottom at 1,,,,. in the infinite-depth case, the hi-directional
radiance reflectance properties of the infinite layer below 1,,,, arc obtained from an eigenmatrix
anaysis described in Preisendorfer®. The same analysis yields the asymptotic diffuse attenuation
coefficient k., and the asymptotic radiance distribution L_(u) appropriate for the homogeneous
layer. In the opague-bottom case, the reflectance properties of the bottom are explicitly specified,
for example as a lambertian surface with a given irradiance reflectance.

The chief advantage of this model is computational efficiency. Solution of the Riccati
differential equations for L isan anaytic process, and thus there arc no Monte Carlo fluctuations
in the computed radiances (except for a negligible amount introduced by the simulation of the
sca surface). In particular, both upwelling and downwelling radiances are computed with the
same accuracy. Moreover, computation time is alinear function of depth, so that accurate
radiance distributions arc easily obtained at great depths (z > 10). Computation time depends
only mildly on quantities such as the scattering-to-attenuation ratio, surface boundary conditions,
and water stratification. The associated computer code is available and is documented in
Mobley’.

Model DO (Discrete Ordinates, authors Z.J. and K. S.) Thismode! solves Eq. (1) directly”
without applying the quad-averaging implied by Eq. (2). The radiance is expanded into a Fourier
cosine series, L(ty,0) =Y " 'L"(t,p)cos(¢-¢,), and the phase function into a series of 2N

Legendre polynomials,
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where g,(z) is the expansion coefficient and v is the scattering angle. The advantage of these
expansions is that the azimuthal dependence is isolated in the sense that 2N independent
equations for the Fourier coefficients L"(t,u) arc obtained:
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Here P,"(n) isthe associated Legengre polynomial,
The atmosphere and the ocean arc divided into a suitable number of layers to adequately
‘resolve the optical properties of each of the two media. Each layer is taken to be homogeneous,
but the optical properties arc allowed to vary from layer to layer, (For a homogeneous medium,
only onc layer isrequired.) At the interface between the ocean and the atmosphere (assumed to
be flat), Fresnel’s formula is used to compute the appropriate reflection and transmission
cocfficients, and Snell’s law is applied to account for the refraction taking place there.

The integra term in each of these azimuth-independent equations is then approximated
by a Gaussian quadrature sum using 2N, terms (“streams’) in the atmosphere and 2N, termsin
the ocean, so that there arc 2N, streams in the refractive region of ocean that “communicate”
directly with the atmosphere, and 2N, - 2N, streams in the total reflection region of the ocean,
In this way the- intcgro-differential equation is transformed into a system of coupled ordinary
differential equations that is solved by the discrete ordinate method, as described in more detail
elsewhere®, subject to appropriate boundary conditions at the top of the atmosphere and the

bottom of the ocean, The basic discrete ordinate method used here is described and thoroughly

10



documented in previous publications® "',  The modifications required to apply the method to a
system consisting of two adjacent media with different indices of refraction arc described by Jin
and Stamnes®,

This method has the following unique features, (i) Because the solution is analytic, the
computational speed is completely independent of individual layer and total optical thickness,
which may be taken to be arbitrarily large. The computational speed is directly proportiona to
the number of horizontal layers used to resolve the optical properties in the atmosphere and
ocean. (ii) Accurate irradiances arc obtained with just a fcw streams, which makes the code
very cfficient. (iii) Because the solution is analytic, radiances and irradiances can be returned
at arbitrary optical depths unrelated to the computational levels. (iv) The DO method is
essentially a matrix cigenvaluc-cigenvector solution, from which the asymptotic solution is
automatically obtained, The smallest eigenvalue iSk., and the associated eigenvector iS L.

' Desirable and possible extensions of the method include (i) the computation of inelastic

\scattering effects to treat phenomena such as Raman scattering, and (ii) the inclusion of a wind-
blown surface to simulate the basic features of sca surface roughness. These extensions would
require some modifications of the existing computer code.

Model MCI1 (Monte Carlo 1, author H. R. G.) This model simulates radiative transfer in
both the ocean and the atmosphere, as coupled across a wind-roughened interface. The code is
designed to simulate irradiances as a function of depth for computation of the irradiance
reflectance E/E, and diffuse attenuation functions such as kK, = —d(InE,)/dz. The nadir-viewing
radiance L, is also computed as a function of depth for the computation of @ = E/L,. The
optical properties of the ocean arc continuous| y stratified in the vertical. They can be specified
asdiscrete values as afunction of depth (with linear interpolation between the given depths) or
determined from formulas as in problem 3, below. Separate scattering phase functions arc used

for the particles and for the water itself. Variants of this code have been used for a number of

studies of radiative transfer in the occan'*"".
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The sea surface roughness is modeled using the Cox and Munk'® surface slope
distribution for a given wind speed. The effect of the surface roughness is not simulated exactly
because the possibility of shadowing of onc facet by another is ignored. Multiple scattering,
however, is included: e.g. if a downward-moving photon in the atmosphere encounters the sea
surface and is still moving downward after reflection, it will undergo a second interaction with
the sca surface, Onc important aspect of this model is the proper usc of photon weights to
account for the fact that not al facets arc oriented in such a manner asto be able to interact with
an incident photon, i.e. facets with normals making an angle less than 90° to the direction of the
incident photon. The sequence of events during an interaction with the surface follows. From
Cox and Munk, the probability that the x and y components of the surface slope, z, and z,

respectively, arc within z, + %adz, and z, + Yadz, is

| I
Pzpz) dz, de, = — 2CXp - ; ’ |dz, dz
noc o)

or

1
o

tan’p
p®,.0,)d6,do, = — exp| —" |tang, sec’d, d6, do, ,
c

where

o? = 0.003 + 0.00512 u .
Here U is the wind speed in m s], ¢, is the angle between the normal to the facet and the normal
to the level surface, and 6, is the azimuth of the normal. Given random numbers p, and p, on

the unit interval (0,1 ), the model finds 6, and ¢, from

8, = 2np,

Y
tarf@’
Pe. ™ o CX@E-% g, s, 64,
2nte? o

The photon interacting with the surface is given the weight
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where o is the angle of incidence on the chosen facet. The weight W accounts for sampling from
P(z,2,) even though all facets arc not visible to the photon.

The atmospheric part of the mode] consists of fifty, one-kilometer layers with both
molecular and aerosol scattering. The vertical distribution of the optical properties is taken from
Elterman', The aerosol phase function at the given wavelength is determined from Mic

theory®® using Deirmendjian’s Haze C size distribution?

dn(r) o 1
dr rv+l

?

where r is the particle radius, h(r) is the number of particles pcr unit volume with radius

betweenr and r + dr; v = 3 is used in the computations. The aerosol total scattering coefficient

at each altitude is proportional to A%, where P = v - 2; however P = 0.75 fits Eltermans’s data

better. When a photon interacts with the atmosphere, the scattering angle is chosen from either

the molecular or aerosol phase functions based on the ratio of their scattering coefficients for the
layer in which the interaction takes place.

When inelastic processes arc to be included, the above code is operated at the excitation
wavelength A, to determine the excitation radiance distribution, Thisis used as input to a second
Monte Carlo code that computes the light field at the wavelength of interest'’. As with the
elasticaly scattered radiation, the goal isto determine the irradiances of the inelastically scattered
radiation, This is a considerable simplification because the solution can be effected by working
with the azimuthally averaged radiance at A, i.e. only the azimuthally averaged radiative transfer
equation need be solved. The details of this formulation arc given in the Appendix.

Model MC2 (Monte Carlo 2, author G. W. K,) Thismodel also simulates a coupled occan-
atmosphere systcm. The Monte Carlo code relics heavily on several variance reducing schemes

to increase computational cfficiency. Wc give only a brief description of onc of the most useful
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ones. The use of statistical weights allows us to treat each photon history as a packer of photons
rather than as a single photon. Photons arc never alowed to escape from the ocean-almosphcrc
system. The method of forced collisions is used, whereby wc sample from a biased distribution
that ensures a collision along the path, and the weight is then adjusted appropriately to unbias
the result, The way thisisdoneisasfollows. Suppose onc wants to compute the expectation
value {f) of some function f of arandom variable x, using a probability density function p(x).

By definition,

(f) = fj(x) p(X) dx .
However, if we want to sample from the density function j(x) then

(f) = fﬂx) px) pOx) dx = fﬂx) w(X) p(x)dx,
P

where w(x) =p(x)/p(x) is caled the statistical weight. The variance o? of fix)w(x) when
sampling from the biased distribution is given by
o[ fx) W(X)] = f [700 W(x) - (1) 5x) dx .

Although this method appears straightforward, it dots have pitfalls. If the weight can have
values that exceed unity, then one can have a variance that far exceeds the variance in the
unbiased sampling. Therefore, extreme caution must be used when using this method. It should
be noted that thisis a very powerful method for studying perturbation effects, because severa
processes can be simultaneously emulated with the same set of photon histories.

Now consider the technique of forced collisions, in which photons arc never alowed to
escape the medium.  Let t, denote the optical path length to a boundary. To insure that the

photon never escapes, wc sample the path length according to the probability density function

joar=_¢ ¢ | o0s<t<n,.

1-¢ ™™
The weight now has to be multiplied by [1 - exp(-1,)] to remove the bias. It should be noticed

that this factor is always | css than unity and should produce a smaller variance than when using
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unforced sampling. Histories arc terminated only when the statistical weight falls below some
specified value.

When an interaction occurs, the packet weight is multiplied by the single scattering albedo
®,, which gives the fraction of photons that can continue to scatter. The level air-water interface
is modeled by using the appropriate Fresnel reflection and transmission coefficients. A random
number is chosen at this stage to determine Whether the photon is transmitted or reflected.

Radiances are obtained over detectors that have finite solid angles. However, statistical
estimation can be used to give true continuum radiance values where no directional averaging
Is done. This model can simulate inelastic scattering; the details arc given in Kattawar and
Xu?, The Monte Carlo method has also been extended to include the full Stokes vector
treatment of polarization”?; these papers show that substantial errors can occur if polarization
ISncglected.

Model MC.? (Monte Carlo 3, authors A.M. and B. G.) This Monte Carlo model is similar
to those described in Plass and Kattawar”® and in Gordon and Brown®. It is designed to
simulate the radiance distribution at any level in the atmosphere and in the ocean. Between these
two media, a wind-roughened interface is modeled using the isotropic Gaussian distribution of
sca surface slopes, as discussed under model MC1. The probability of occurrence of the various
dopes is modified when considering nonvertically incident photons. This photon-facet interaction
ismodeled as in Plass, er al.™; it does not account for the possible occultation of a facet by an
adjacent one. Transmitted and reflected photon packets resulti ng from interaction with the air-
water surface arc weighted according to Fresnel’s law (including the possibility of total internal
reflection), According to the problem under investigation, photon packets arc introduced at the
top of the atmosphere, or just above (or below) the ocean surface. For specific problems
involving deep levels, packets can be rc-introduced at intermediate depths inside the water body,
according to a directional distribution that reproduces the downward radiance field as resulting

from a previous Monte Carlo run, Thebottom boundary is either an infinitely thick absorbing
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layer, in which photons arc lost from the system, or alambertian reflecting bottom of a given

albedo, from which weighted photon packets are reflected.

After each collision, the weight of each photon packet is multiplied by the local value of
w, pertinent to the altitude or the depth, to account for its partial absorption. A packet history
is terminated when its weight falls below a predetermined value, typically 1 x| 07, For each
collison arandom number on the unit interval is compared to the local value of the ratio of the.
molecular scattering coefficient to the total scattering coefficient, to determine if the scattering,
event will be of molecular type (air or water molecules), or due to an aerosol or hydrosol
particle, The appropriate phase function is then used to determine the scattering angle; the
orientation of the scattering plane is chosen at random on the interval (0,2x). The number of
photons initiated depends on the single-scattering albedo value, so as to control the stochastic
noise in the computed radiometric quantities (details can be found in Morel and Gentili*'*?).

. Themodel is operated for its oceanic segment with the optical properties as specified in Sec. 11 1.
For the atmospheric segment, fifty 1-km thick layers arc considered, with spécificd values for
Rayleigh and aerosol scattering and for ozone absorption as in Elterman'®, The aerosol phase
function (as computed by Mic scattering theory) for the maritime aerosol model defined by the
Radiation Commission of IAMAP is used; scc the models of Tanré, et al.** and Baker and
Frouin®,

Model MC4 (Monte Carlo 4, author P.R.) This model is intended primarily for smulation
of the radiance distribution above and just below the surface, and for smulation of irradiances
with the first five mean free paths of the surface. The model is based on techniques described
by Kirk*. The model atmosphere is composed of fifty layers, each characterized by separate
Rayleigh and particul ate scattering coefficients and an albedo of single scattering, as given by
Elterman'., Weighted photon beams arc projected into the atmosphere from the atmosphere-space
boundary, and a collision is forced somewhere in the atmosphere along this origina trajectory.

The attenuated beam, which is the weight of the original beam less the portion lost to scattering
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and absorption, strikes thesea surface at the angle of the original trgjectory. Beam losscs duc
to absorption and scattering take place at the point of collision. There the absorbed portion is
lost and the scattered portion exits the collision point in another single, weighted beam. A
random number is' compared to the ratio of the Rayleigh scattering cross section to the total
scattering cross section to determine the type of volume scattering function governing the
scattering event.  In the case of an aerosol scattering, a two-term Henyey-Greenstein phase
function is used to determine the scattering angle™. Otherwise, the angle is determined by a
Rayleigh phase function®.  Once the trajectory of the scattered portion of the beam is
calculated, the distance from the point of collision to the next encountered interface (air-water
or air-space) is determined. A ncw collision is forced somewhere along this trgjectory, and the
process is repeated until the weight of the scaticred portion of the beam falls below a preset
minimum fraction of the origina beam weight. This minimum traceable weight is set to 1x10-6
(of the original beam weight for the ssimulations presented below.

Some of the scattered trajectories encounter the atmosphere-space boundary and are
forgotten; the others impinge on the scasurface. For the latter, the angle of incidence depends
on the nadir angle of the ray and slope of the sca surface. The directions of the reflected and
refracted rays arc determined geometrically, and the weights of the rays are calculated from the
Fresnel formula. Although wave shadowing is neglected, multiple surface interactions may occur.
A reflected ray that is still projected downward, or a transmitted ray projected upward, must
encounter the sca surface again immediately, without an intervening trajectory. Ray trgectories
resulting from reflection are followed in the original manner. Transmitted portions of the beams
are followed similarly until encountering the bottom or the sca surface, or until being diminished
to less than the minimum traceable weight, Those beams striking the bottom arc lost; those
incident upon the sca surface from below arc again subjected to the reflection and transmission

calculations,
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Model MC5 (Monte Carlo 5, author R. H. S.) The Naval Research Laboratory (NRL)
optical model (referred to as the NORDA or NOARL optical model in earlier publications) uscs
standard Monte Carlo techniques'?**, At each scattering event, a random number is used to
determine if -the scattering is due to molecular water, quartzlike particulates, algae, or organic
detritus; the volume scattering functions of these components arc treated separately, rather than
using an average volume scattering function. The model includes the effects of Raman
scattering. If aphoton collision results in inelastic scattering (as determined by comparing a
random number to the appropriate optical propertics of the medium), the wavelength is shifted
by an amount corresponding to the mean wavenumber shift of 3357 cm! corresponding to Raman
scatter by water molecules. The finite bandwidth of the Raman-shifted light is taken into account
by averaging over 10 rim-bandwidths (roughly corresponding to current oceanographic
instruments); details of this averaging arc described in Stavn and Weidemann®*,  For the

Jsi mulation of problem 7, below, it was assumed that the Raman scattering occurs in a very
narrow waveband. The photons arc tallied into zonal bands, as is convenient for computation
of irradiances and the nadir-viewing radiance.

There is no aimosphere per se implemented in the model. Atmospheric transmittances
of solar irradiance needed for simulations arc obtained from the non-layered atmospheric model
of Brinc and Igbal*. The mode] determines the skylight radiance pattern from the empirical
mode] of Harrison and Coombes®. The present version of the code handles only homogeneous

waters.

111. Canonical Problems
Woc now define several canonical, or standard, problems for solution by underwater
radiative transfer models. Models claiming to provide realistic smulations of the oceanic optical

environment should be able to solve these problems, and provide output that is at least as
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accurate as the data obtainable by presently available instrumentation. In brief, these problems
arc

Problem 1. An unrcalistically simple problem

Problem 2. A base problem using realistic inherent optical propertiesfor the sea water

Problem 3: The base problem, but with stratified water

Problem 4: The base problem, but with atmospheric effects

Problem 5:  The base problem, but with awind-blown sca surface

Problem 6: The base problem, but with a finite-depth bottom

Problem 7: A problem involving Raman scattering.

In each of these problems, the water body is taken to be horizontally homogeneous. The
real index of refraction of the water isn = 1.340. The depth below the surface can be specified
by either the nondimensional optical depth 1 or by the geometric depth z in meters. The base

_problem 2 assumes that (1) the air-water surface is flat, (2) the water is homogeneous and
infinitely deep, (3) thereis no atmosphere, i.e. the sky isblack, (4) the sunisapoint light source
located at a zenith angle of 6,,, = 60°, (5) the sun provides a spectral irradiance just above the
sca surface of magnitude E, = 1 W m™ ri"] on a surface perpendicular to the sun’s rays (which
givesk, =0.5W m?rim-| for 6,,, = 600), (6) there is no inelastic scattering or other sources of
light within the water body, (7) the angular scattering properties of the water arc characteristic
of natural hydrosols, and (8) the water is either highly scattering (o, = 0.9) or highly absorbing
(w, = 0.2). The other problems arc defined by exceptions to these assumptions. The specific
problem definitions arc as follows.

Problem 1. A Rayleigh phase function

Eu,(u’,¢’%u,¢) = ﬁw(W) i %1; (1 + cos?y) €)

IS used to describe the angular scattering properties of the water. The scattering angle vy is

related to the incident (p’,$') and scattered (u,0) directions by
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e cos"[up’ + &/1 - ‘/1 - ' cos(¢ - ¢)

This phase function, which is plotted in Fig. 1(b) below, is similar to that of pure seawater. The
Rayleigh phase function is a well behaved function of the scattering angle y and presents no
numerical difficulties in its treatment; wc therefore consider this an “easy” problem for numerical

modeling. Note that f§ ,, satisfies the normalization

21 f B(y) siny dy = 1. (4)
0

Both highly scattering (m, = 0.9) and highly absorbing (w, = 0.2) cases arc considered for the
Rayl.ci gh phase function.
Problem 2. This“base” problem uscs a phase function that is typical of oceanic waters.
Thetotal volume scattering function (VSF) B is
B=P,+B,
where subscripts w and p refer to pure sca water and to particles, respectively. The total phase

function f therefore can be expressed as

~ B =2, 2 F,. . ©

This total B must satisfy the normalization (4), which is the case if B, and B, arc each
normalized.

The particle phase function Ep is defined from three VSF' S measured by Petzold* in

San Diego Harbor. The VSF for pure sca water® was first subtracted to find the three particle

VSF’s. Then the scattering coefficient of pure sca water** (b, = 0,00231 m™ at A = 530 nm,

the wavelength of Petzold’s data) was subtracted from the respective .scatteri ng coefficients

computed by Petzold (b = 1.205, 1.536, and 1.824 m™ for the three VSFs) to find the particle

scattering coefficient b, for each VSF. The three particle phase functions were then computed

using these b,’s, and the¢ mean value of the three B » § was computed at each scattering angle,
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Thismecan Ep(\u) becomes infinite at w = O, if it is assumed that B (W) -y ™ asy — 0, where
m = 1.346 is the negative of the slope of log B »(W) vs. log ¥ at the two smallest tabulated
scattering angles (y = 0.10° and O. 125890). When this functional form of {3 » Was used to
analyticaly integrate 2n ﬁp(w)sin\y fromy = Otoy =0.10° and the trapezoida rule was used
to integrate from y = 0.12589° to y = 180°, the normalization integral (4) gave the value
1.006449. Wc thus divided the mean 3, by 1.006449 to obtain the values shown in Tab. II. The.
particle phase function () isthen defined to be the tabulated values, with linear interpolation
to be used between the tabulated values, and with 3 KO Bp(o. 12589°)(0. 12589°/y)"* for y
<0.12589°, The resulting () is defined for all y and exactly satisfies the normalization
condition (4). Thisp , Isplotted in Fig. 1(b), below.

Moreover, since b, = 0.00231 m™ is much lessthan b, (> 1.2 m" for each of the Petzold
VSF's), it is reasonable to neglect the contribution of the water, B ,, to the total phase function
‘of Eq (5). This omission creates an error of at most afcw percent in B even at backscattered
Vdi rections (y > 900). Wc therefore define the total phase function for problem 2 to be just the
particle phase function as defined above: B (y) = B,(). This B is represcntative Of phase
functions measured in ocean waters with typical particle concentrations and, because of its highly
peaked behavior at small y, can be expected to test the numerical models' abilitiesto handle
realistic phase functions. Both highly scattering and highly absorbing cases arc considered for
this phase function.

Problem 3. This problem is designed to test the models’ abilities to compute light fields
in highly stratified water. The water stratification is specified as follows. The particulate

absorption and scattering coefficients arc taken to be

a, 0.04 C°% (63)

and
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b,=033¢c "%, (60)

respectively, where C is the chlorophyll (pigment) concentration. When Cisin mgm™, a, and
b, arcinm™. The absorption representation (6a) is based on Pricur and Sathyendranath* at a
wavelength of A = 500 nm, The scattering representation (6b) is based on Gordon and Morel**
with A = 500 nm and assuming that b,(A) - A~'. The pigment profile with depth is based on

Lewis, et al* and consists of a gaussian plus a constant background:

c(z) = Co + __cxp r1 1 (78)

Platt and Sathyendranath*’ show that Eq. (7a) W|th t ameter values

CO=02mgm™ (7b)
s=9m (7c)
Zmax — 17 M (7d)
h = 144 mgm™ (7¢)

fits data from the Celtic Seain May very well. Wc ‘therefore adopt Eq. (7) as a reasonable
model for C(z). When Eq. (7) is used in Eq. (6), the particulate absorption and scattering
coefficients, and hence all inherent optical properties, become functions of depth. The absorption
and scattering coefficients for pure sca water at A = 500 nm arc given by®

a, =0,0257 m™ (8a)
and

b, = 0.0029111-". (8b)

When the chlorophyll  concentration is low, scattering by pure sca water makes a

significant contribution to the total scattering at large s¢attering angles (almost ¥2 when C = CO
and y = 1800). Therefore, for this problem it iSnecessary t0 USC Eq. (5) to determine the total

phase function from the phase functions for pure sca water, j3 .., and for particles, » aswere
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defined in problems 1 and 2. The phase function is now a function of depth, asis the scattering-
to-attenuation ratio

b, T b2

a, + ap(z) + bw+bp(z) “

il

®

o

b
c

Figure 1(a) shows a, b, ¢ and o, as functions of depth for problem 3, and Fig. 1(b) shows the
phase functions at selected depths.

Problem 4. Thisproblem is the same as problem 2 with , = 0.9, except that atmospheric
effects are included. The sky is no longer black, but rather has a radiance distribution that
describes the atmosphere’s scattering and absorption effects on sunlight, The incident solar
irradiance, E, = 1 W m?2ri"], isnow applied at the top of the atmosphere. The atmospheric
optical effects arc defined by Elterman’s'® agrosol and Rayleigh scattering optical thicknesses at
A =500 nm:

Tperosor = 0.264

Trayteigh = 0-145.
Since the numerical models incorporate atmospheric effects in various ways, a more detailed
specification of the atmosphere is not made.

Problem 5. This problem is the same as problem 2 withw, = 0.9, except that the effects
of awind-blown sca surface arc included. The surface waves arc statistically specified as having
awave slope standard deviation of 6 = 0.2 in the Cox-Munk'® capillary wave spectrum

¢>= 0.003 + 0.00512 U ;
where U is the wind speed in meters pcr second. Thus ¢ = 0.2 corresponds to a wind speed of
U=7.23ms". The solar zenith angle is taken to be 6, = 80°.

Problem 6. Thisproblem is the same as problem 2, except that a finite-depth bottom is
imposed. The bottom is taken to be an opague, lambertian reflecting surface at depth 1 = 5.
This surface has an irradiance reflectance (E/E,) of 0.5. Such a surface is a reasonable model

of alight colored, sandy bottom.
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Problem 7, This problem is for usc in comparing models that include the effects of
Raman scattering by water molccules. The wavelength of excitation is taken to be A, = 417 nm,
and all light that is Raman scattered at 417 nm is assumed to shift to A = 486 nm. The Rayleigh
phase function, Eq. (3), is used for elastic scattering. The phase function for Raman scattering

is48

o) |1+ sy, o
Ram 16m 1 + 2p

where p is the depolarization ratio. For thisproblem, wc usc p = 0.17 and take the total Raman
scattering coefficient b,,,, equal the elastic scattering coefficient of the water itself, i.e.b,,,, = b,.
The absorption and elastic scattering coefficients of pure sca water at the wavelengths in question

as taken from Smith and Bakcr”are

a (417)= 0.0156 m !
b (417) = 0.0063 m
a (486) =0.0188 m *
b (486)=0.0032 m .

Considering the way in which Smith and Baker inferred a, from irradiance data, it is assumed
that by, isaready included in the value of a,. Thus the total beam attenuation coefficient at
each wavelength isjust a, + b,. A unit irradiance E, isincident at the sca surface on a plane
normal to the solar beam at the excitation wavelength,, =41 7 nm. There is no atmosphere and
no solar irradiance isincident on the sca surface at A = 486. The resulting irradiances at 486 nm
arc those that would be duc solely to inelastic scattering from 417 nm. The solar zenith angle
is 60° and the air-water surface is flat,

Table Il summarizes the various canonical problems,
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V. Model Comparisons

Although the models generally compute the radiance L, the quantities most often used in
oceanic optics arc various irradiances.  Theseirradiances arc defined by weighted integrations
of the radiance distribution over the upward and downward hemispheres of directions, as shown
in Tab. 1, and are easily obtained from computed radiances. The nadir-viewing radiance L, is
the radiance seen by a sensor pointed straight down (in the nadir direction); L, isimportant in
remote sensing studies. The ability of a numerical model to accurately compute the irradiances
and nadir radiance is a measure of its utility for many oceanographic studies.

Models 11 and DO compute all quantities with equal accuracy. However, the Monte Carlo

models MC1-MC5 compute upwelling quantities (e.g. E,, E,,, or L,) with less accuracy than

downwelling quantities (e.g. E, or E,,). Thisisbecause most of the smulated photons, all of
which are initially heading downward, continue to head downward and thereby contribute to E,
or k.. However, only the relatively fcw photons that arc scattered into upward directions can

contribute to E,, E,,, or L, fewer photons means greater statistical fluctuations in the computed

values.

Also, for agiven initial number of photons, the Monte Carlo models must settle for Icss
accuracy at a given optical deptht in highly absorbing waters (small w,) than in highly scattering
waters (large w,). This is because photons absorbed before they reach depth 1 are not available
to be tallied in the computation of the radiance or irradiance, whereas scattered photons can
eventually reach depth t and be tallied. In practice, the accuracy of the Monte Carlo models
is strongly dcpendcent on the number of photon collisions; thus more photons must be processed
when o, is small, in order to achicve satisfactory accuracy. The accuracy of models 11 and DO
is independent of

With the above comments in mind, wc sclected E,, E,, and L, for comparison just above
the scasurfaceand at t = 1, 5 and 10. Problems1and 2 have both highly scattering (w, = 0.9)

and highly absorbing (w, = 0,2) waters,
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Although it is not possible to compare the computational cfficiencics of the various
models because they were run on avariety of computers, with differing numbers of photons
traced in the Monte Carlo codes, Tab. IV shows some representative execution times. It should
be noted that the long execution times shown for some of the Monte Carlo codes arc the times
required for accurate radiance simulations at large depths. If only irradiances or near-surface
radiances arc required for a particular study, these models can be run for much shorter times.
For example, in the simulation of problem 3, output from model MCI was compared for run
times of 180 s and 7200 s, The E, values throughout the euphotic zone (roughly the upper 21
m), as accumulated after 180 s, were within 1.5% of the values obtained after 7200 s. After 180
s, the E,, and L, values just below the surface (at z = O) were within 1 % of their final values.
Deeper within the cuphotic zone, E,, and L, differed by as much as 8% and 20%, respectively,
for the two run times. At a depth of z =60 m, the differences in the computed quantities for the

two times were 3% for E,, 19% for E,,, and afactor of six for L,. Model DO is much more
efficient for irradiance than for radiance computations, because only the azimuthally averaged
equation (i.e. the m = O component of the radiance) is required to compute irradiances Or
azimuthally averaged radiances. Full radiance computations require the evaluation of additional
azimuthal components, Strongly anisotropic scattering also requires a large number of streams.

We now briefly discuss the results of the models' simulations of problems 1-7.

Problem 1. Figure 2(a) shows the computed E, E,, and L, for the Rayleigh phase
function of problem 1 and w, = 0.9. In this and subsequent figures, we plot the results from the
two anaytic models, Il and DO, with solid lines; the Monte Carlo results arc plotted with dashed
lines. This makes it easy to scc that, in most instances, the Monte Carlo results arc distributed
to either side of the analytic results, which arc usualy indisti nguishéble in the figures.

Wefirst note in Fig. 2(a) that al models predict nearly the same values for a given
quantity, although there is adetectable spread in L, values owing to Monte Carlo fluctuations.

This behavior is expected, based on the preceeding discussion, However, we aso note that all
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models predict nearly the same values for Ed and E,,, Which is counter to intuition based on
oceanographic experience. Thisresult is easily explained if we recall that the Rayleigh phase
function is nearly isotropic (independent of the scattering angle) and that the medium is highly
scattering.  Because of the intense scattering, the incident collimated radiance distribution
approaches its asymptotic form very quickly with depth.  Preisendorfer** shows that for an

isotropic phase function the asymptotic radiance distribution L., has an elliptical shape:

L

Here LO depends only on the inherent optical properties, and k., is the eccentricity of the ellipse;
k., isnumerically equal to the nondimensional asymptotic diffuse attenuation coefficient. The
analytic forms of L_ for aRayleigh phase function and a Raylcigh phase matrix are also
known™For o =,0.9 the Rayleigh L. is very, closc to eliptical, and so wc can use the ssimpler
l1‘orm of Eq. (1 O) for the following argument. The E, and E,,, corresponding to L., of Eq. (1 O)

arc

27cLo
D = - [k, + In(1 - k)]
k. 1)
2nL
=21 + k).

Now the value of k_ for the problem at hand turns out to be k., = 0.52 (see Tab. VII, below).
This valuc is coincidentally very near to the value k. = 0.531, which makes E, = E_, in Eq. (11),
thus explaining the numerical results seen in Fig. 2(a). This peculiar behavior of E, and E,,
depends both on the phase function and on the scattering-to-attenuation ratio. Such behavior is
not seen in the output for the other problems, nor would it ever be encountered in a natural water
bodly.

Note also that both E, and E,, arc greater just below the water surface than just aboveit,
which may also seem counterintuitive. However, thisisjust the phenomenon of “optical energy

trapping” in highly scattering waters, as discussed by Stavn, er al.* and by Plass, et al.*. In
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the present case of a solar angle of 60°, more than 93% of the incident solar irradiance IS
transmitted through the level surface into the water.  About one half of the highly diffuse
upwelling irradiance just below the surface is reflected back down by the surface. The total Ed
just below the surface is the sum of the transmitted solar contribution and the reflected upwelling
contribution; this sum is greater than Ed(air). Likewise, E, (air) consists of the (relatively weak)
specularly reflected solar beam plus diffuse light transmitted upward through the water surface;
thissumislessthan E,, just below the surface,

Figure 2(b) shows the output for the Rayleigh phase function and a highly absorbing
medium with @, = 0.2. Now E_, is an order of magnitude less than Ed. There is ailmost a factor-
of-three spread in the Monte Carlo estimates of E,, at T = 10, and three of the Monte Carlo
models had too few photons left at T = 10 to provide an estimate of L, at that depth. This
behavior is expected for this highly absorbing case.

‘ Table V displays the average (over al models) values of E, E and L, at sclected depths
for this and the remaining problems. These data arc provided for readers who wish to compare
their own models with ours.  Such comparisons should be especially worthwhile for ssimple
parameterized models that attempt to compute irradiances without solving the complete radiative
transfer equation. The table also displays the ratio of the sample standard deviation s to the

sample mean X,

. . ) )
_TN2
_——N—I,Z:;(xi x)
& i
RN

where xi is the result predicted by the /* model for, the quantity of interest, and N is the number

S
X

of model predictions (N = 7 for most quantities). The ratio s/x is a quantitative measure of how
closc together the models' predictions arc for a given quantity. Inspection of this ratio for

problem 1 shows that the model predictions arc usually closer together for the highly scattering
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case (w, = 0.9) than for the highly absorbing case (w, = 0.2), closer together at shallow depths,
and closest together for E,. The greatest spread in valuesis for L, at large depths, owing to the
small number of photons available for its estimation by the Monte Carlo models.

Problem 2. Figure 3 shows the models' output for problem 2. Figure 3(a) is for the
highly scattering case of w, = 0.9. Each of the seven models provides essentially the same
valuesfor E, and for E,, to 10 optical depths (and deceper); some Monte Carlo fluctuation is
apparent in the L, vaFigese 3(b) shows the same computations for the highly absorbing
case of w, = 0.2. Once again, al models give nearly the same values for E, and for E,, to 10
optical depths. Now, however, considerable Monte Carlo fluctuation in the L, valuesis seen at
even shallow depths; only models |1, DO and MC3 were able to compute L, below t = 10.

Wc emphasize that the large fluctuations seen in some of the estimatesin Fig. 3(b) are

simply the result of tracing an insufficient number of photons in the simulations, and not of any
jinadequiacies in the models themselves.  Tracing additional photons, at a proportional increase
in computational expense, can reduce these fluctuations to any desired level. The particular
values seen in Fig. 3 arc each the result of one simulation. Running the Monte Carlo models
with different seeds for their random number generators would generate a noticeably different
set of curves for those instances where large fluctuations arc seen in Fig. 3. It should be noted
that there arc certain sampling schemes that can improve the statistics at greater depths.
However, this improvement is usually at the expense of larger errors in the radiometric quantities
at smaller depths.

The cuphotic zone is the region of a water body where there is sufficient light for
photosynthesis to take place. In normal daylight conditions, it extends from the surface to a
depth where the irradiancc is roughly onc percent of its surface values, Wc sec in Fig. 3(b) that
E, and E,, have decreased by two orders of magnitude at about four optical depths. Each of the
models produces nearly identical irradiances to depths greater than 1 = 4, so that each of the

modelsis perfectly adequate for the purposes of biological oceanography. Likewise, the models
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produce very nearly the same water-leaving radiances, L, (air), as would be of interest in remote
sensing studies.

Problem 3. Figure 4 showsthe models output for problem 3, the stratified water case.
The one-percent irradiance level is now at about z = 21 m. Once again, the models provide
nearly identical output to depths far below the cuphotic zone.

Problem 4. Figure 5 shows E, values near the water surface for the smulation of problem
4, the case with an atmosphere. The different ways in which the models simulate the atmosphere
lead to an 1896 spread in the values of E, just above the water surface, This difference in Ed(air)
values is then carried throughout the underwater computations. The s/x ratio displayed in Tab.
V is uniformly large for this problem because of the systematic offset of the different models
predictions. Note that apparent optical properties, such as reflectances and diffuse attenuation
functions, arc not affected by this offset, because the apparent properties arc defined as ratios of

Jadiometric quantities. For example, the s/x ratio for the K, values computed from the plotted
E, values at depths z = O and 1 mis 0.009, which is much smaller than the s/x = 0.076 vaue
tabulated for E, at 1 = O.

Problem 5. Four of the models (11, MCI, MC3 and MC4) are capable of simulating a
wind-blown air-water surface as defined in problem 5. Figure 6 shows output from these models
for asolar zenith angle of 6., = 80°. The models arc nearly identical in their output, even in
this case of nearly horozontal incidence, for which any differences in the models should be most
noticeable. Note that E, (air) is greater than Ed(air). This is because E, (air) contains a large
contribution by the specularly reflected solar beam: simulations by Preisendorfer and Mobley*
show that the reflectance of a capillary-wave surface is greater than 0.22 for a wind speed of 7.23
m S and 6,,, = 80°. The solar beam contribution to E, is weighted by a cos6,,, factor, which
issmall fore,,, = 80°.

Problem 6. Models I1, DO, and MC3 can simulate a finite-depth bottom. Figure 7 shows

the output from both models for the case of ®, = 0.2; the models arc clearly in excellent
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agreement. It is easy to show that E,, = E, for alambertian surface of reflectance 0.5, and all
three models show thisexpected result at depth 1 = 5.

Problem 7. Four of the models (MCI, MC2, MC3 and MC5) can simulate Raman
scattering. Table VI compares the inelastically scattered contributions to the downwelling and
upwelling plane irradiances, E, and E, respectively, for the ssmulation defined in problem 7. The
models are clearly in excellent agreement, even though their respective formulations of inelastic
scatter are somewhat di fferent.

Computation of radiance distributions. Five of the models (11, DO, MC2, MC3 and MC4)
compute the full radiance distribution, rather than just tallying photons as nccessary to compute
the irradiances and L,. Figure 8 illustrates the consistency with which the various models
compute the radiance distribution. The figure shows L(1,6,¢) in the plane of the sun at depths
of t=0, 5and 20 for problem 2, , = 0.9. Direction (8,,¢,) gives the viewing direction, i.e. the.

. direction an instrument points in order to detect photons traveling in the (6 = 180° - 6,, $ = 180°
+ ¢,) direction. Thus 6, = O corresponds to looking straight up and seeing photons heading,
straight down; the nadir radiance L, of Fig. 3(a) is the value plotted at 6, = 180°. The sunisin
the ¢, = 0° haf-plane.

The curves of Fig. 8 arc explained as follows. Wc begin att = O (in the water just below
the surface) with our backs to the sun (looking in the ¢, = 180° direction). Looking straight
down wc scc the nadir radiance at (6,,¢9,) = (1 80°, 1800). Looking up toward the horizontal (¢,
= 900), the radiance increases slightly owing to total internal reflection of radiance that has been
scattcred into nearly horizontal directions. The radiance then decreases quickly as our viewing
angle passes beyond th